By Topic

Secrecy Capacity Region of a Multiple-Antenna Gaussian Broadcast Channel With Confidential Messages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ruoheng Liu ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ ; H. Vincent Poor

Wireless communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of secret communication over the Gaussian broadcast channel, where a multiple-antenna transmitter wishes to send independent confidential messages to two users with information-theoretic secrecy. That is, each user would like to obtain its own confidential message in a reliable and safe manner. This communication model is referred to as the multiple-antenna Gaussian broadcast channel with confidential messages (MGBC-CM). Under this communication scenario, a secret dirty-paper coding scheme and the corresponding achievable secrecy rate region are first developed based on Gaussian codebooks. Next, a computable Sato-type outer bound on the secrecy capacity region is provided for the MGBC-CM. Furthermore, the Sato-type outer bound proves to be consistent with the boundary of the secret dirty-paper coding achievable rate region, and hence, the secrecy capacity region of the MGBC-CM is established. Finally, two numerical examples demonstrate that both users can achieve positive rates simultaneously under the information-theoretic secrecy requirement.

Published in:

IEEE Transactions on Information Theory  (Volume:55 ,  Issue: 3 )