By Topic

Large System Spectral Analysis of Covariance Matrix Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Husheng Li ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN ; Poor, H.V.

Eigendecomposition of estimated covariance matrices is a basic signal processing technique arising in a number of applications, including direction-of-arrival estimation, power allocation in multiple-input/multiple-output (MIMO) transmission systems, and adaptive multiuser detection. This paper uses the theory of non-crossing partitions to develop explicit asymptotic expressions for the moments of the eigenvalues of estimated covariance matrices, in the large system asymptote as the vector dimension and the dimension of signal space both increase without bound, while their ratio remains finite and nonzero. The asymptotic eigenvalue distribution is also obtained from these eigenvalue moments and the Stieltjes transform, and is extended to first-order approximation in the large sample-size limit. Numerical simulations are used to demonstrate that these asymptotic results provide good approximations for finite systems of moderate size.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 3 )