By Topic

Design of Power-Rail ESD Clamp Circuit With Ultra-Low Standby Leakage Current in Nanoscale CMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chang-Tzu Wang ; Nanoelectron. & Gigascale Syst. Lab., Nat. Chiao-Tung Univ., Hsinchu ; Ming-Dou Ker

An ultra-low-leakage power-rail ESD clamp circuit, composed of the SCR device and new ESD detection circuit, has been proposed with consideration of gate current to reduce the standby leakage current. By controlling the gate current of the devices in the ESD detection circuit under a specified bias condition, the whole power-rail ESD clamp circuit can achieve an ultra-low standby leakage current. The new proposed circuit has been fabricated in a 1 V 65 nm CMOS process for experimental verification. The new proposed power-rail ESD clamp circuit can achieve 7 kV HBM and 325 V MM ESD levels while consuming only a standby leakage current of 96 nA at 1 V bias in room temperature and occupying an active area of only 49 mum 21 mum.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:44 ,  Issue: 3 )