By Topic

Solution of the Forward Problem in Magnetic-Field Tomography (MFT) Based on Magnetoencephalography (MEG)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Khan, S.H. ; Sch. of Eng. & Math. Sci., City Univ., London ; Aristovich, K.Y. ; Borovkov, A.I.

This paper presents the methodology and some of the results of accurate solution of the forward problem in magnetic-field tomography based on magnetoencephalography for brain imaging. The solution is based on modeling and computation of magnetic-field distribution in and around the head produced by distributed 2-D cortical and 3-D volume lead current sources. The 3-D finite-element model of the brain incorporates realistic geometry based on accurate magnetic resonance imaging data and inhomogeneous conductivity properties. The model allows arbitrary placement of line, surface, and volume current sources. This gives flexibility in the source current approximation in terms of size, orientation, placement, and spatial distribution.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 3 )