By Topic

Analytical Computation of the Full Load Magnetic Losses in the Soft Magnetic Composite Stator of High-Speed Slotless Permanent Magnet Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chebak, A. ; LEEPCI Dept. of Electr. & Comput. Eng., Laval Univ., Quebec City, QC ; Viarouge, P. ; Cros, J.

This paper presents an analytical model for predicting the stator full load magnetic losses in high-speed slotless permanent-magnet machines with surface-mounted magnets on the rotor and a stator core made of isotropic and conductive soft magnetic composite material (SMC). The losses are derived from the computation of the two-dimensional magnetic field distribution created by the rotor magnets, the currents in the stator windings and the eddy currents that circulate in the SMC stator core, according to the time and space harmonics. Both eddy currents and hysteresis losses are computed. The model is cross-validated by 2-D FE analysis in terms of magnetic field distribution and eddy currents losses. 3-D FE simulations are also carried out to quantify the end-effect on the stator no-load eddy current losses. The developed model is an efficient machine design tool, used here to quantify the variations of both the eddy currents and hysteresis losses under full load operation when the control angle is modified.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 3 )