By Topic

25 MHz ultrasonic transducers with lead- free piezoceramic, 1-3 PZT fiber-epoxy composite, and PVDF polymer active elements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jadidian, B. ; J & W Med. LLC, Westport, CT ; Hagh, N.M. ; Winder, A.A. ; Safari, A.

This paper presents the fabrication and characterization of single-element ultrasonic transducers whose active elements are made of lead-free piezoceramic, 1-3 PZT/polymer composite and PVDF film. The lead free piezoelectric KNNLT- LS(K0.44Na0.52Li0.04)(Nb0.84Ta0.10S0.06b)O3 powders and ceramics were prepared under controlled humidity and oxygen flow rate during sintering. Due to its moderate longitudinal piezoelectric charge coefficient (175 pC/N) and kt of 0.50, the KNN-LT-LS composition may be a good candidate for high frequency transducer applications. PZT fibers with 25 mum diameter formed by the viscose suspension spinning process were incorporated into epoxy to fabricate 1-3 composites with the averaged kt = 0.64 and d33 = 400 pC/N. Using KNN-LS-LT ceramic, 1-3 PZT fiber composite, and PVDF film, 3 different unfocused single element transducers with center frequencies of 25 MHz were fabricated. The acoustic characterization of the transducers demonstrated that wideband and low insertion loss could be obtained employing KNN-LS-LT ceramic. The -6 dB bandwidth and insertion loss were 70% and -21 dB, respectively. In comparison, the insertion loss of the ceramic transducer was much smaller than those made with 1-3 composite and PVDF film. This was attributed to closer electrical impedance match to 50 Omega and higher thickness coupling coefficient of the ceramic transducer.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:56 ,  Issue: 2 )