By Topic

Low phase-noise sapphire crystal microwave oscillators: current status

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ivanov, E.N. ; Sch. of Phys., Univ. of Western Australia, Crawley, WA ; Tobar, M.E.

This work demonstrates that ultra-low phase-noise oscillators with a single-sideband phase-noise spectral density approaching -160 dBc/Hz at Fourier frequency of 1 kHz can be constructed at microwave frequencies (8 to 10 GHz). Such noise performance has been achieved by frequency locking a conventional loop oscillator to a temperature-stabilized sapphire dielectric resonator operating at a relatively high level of dissipated microwave power (~0.5 W). Principles of microwave circuit interferometry have been employed to generate the error signal for the oscillator frequency control system. No cryogens were used. Two almost identical oscillators were built to perform the classical 2-oscillator phase noise measurements. The phase referencing of one oscillator to another was achieved by varying microwave power dissipated in the sapphire resonator.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:56 ,  Issue: 2 )