By Topic

Complex Lattice Reduction Algorithm for Low-Complexity Full-Diversity MIMO Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ying Hung Gan ; Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., Hong Kong ; Cong Ling ; Wai Ho Mow

Recently, lattice-reduction-aided detectors have been proposed for multiinput multioutput (MIMO) systems to achieve performance with full diversity like the maximum likelihood receiver. However, these lattice-reduction-aided detectors are based on the traditional Lenstra-Lenstra-Lovasz (LLL) reduction algorithm that was originally introduced for reducing real lattice bases, in spite of the fact that the channel matrices are inherently complex-valued. In this paper, we introduce the complex LLL algorithm for direct application to reducing the basis of a complex lattice which is naturally defined by a complex-valued channel matrix. We derive an upper bound on proximity factors, which not only show the full diversity of complex LLL reduction-aided detectors, but also characterize the performance gap relative to the lattice decoder. Our analysis reveals that the complex LLL algorithm can reduce the complexity by nearly 50% compared to the traditional LLL algorithm, and this is confirmed by simulation. Interestingly, our simulation results suggest that the complex LLL algorithm has practically the same bit-error-rate performance as the traditional LLL algorithm, in spite of its lower complexity.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 7 )