Cart (Loading....) | Create Account
Close category search window

Minimum BER Linear MIMO Transceivers With Adaptive Number of Substreams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ordonez, L.G. ; Dept. of Signal Theor. & Commun., Tech. Univ. of Catalonia (UPC), Barcelona ; Palomar, D.P. ; Pages-Zamora, A. ; Fonollosa, J.R.

MIMO systems with perfect channel state information at both sides of the link can adapt to the instantaneous channel conditions to optimize the spectral efficiency and/or the reliability of the communication. A low-complexity approach is the use of linear MIMO transceivers which are composed of a linear precoder at the transmitter and a linear equalizer at the receiver. The design of linear transceivers has been extensively studied in the literature with a variety of cost functions. In this paper, we focus on the minimum BER design, and show that the common practice of fixing a priori the number of data symbols to be transmitted per channel use inherently limits the diversity gain of the system. By introducing the number of symbols in the optimization process, we propose a minimum BER linear precoding scheme that achieves the full diversity of the MIMO channel. For the cases of uncorrelated/semicorrelated Rayleigh and uncorrelated Rician fading, the average BER performance of both schemes is analytically analyzed and characterized in terms of two key parameters: the array gain and the diversity gain.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 6 )

Date of Publication:

June 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.