By Topic

Interference-aware QoS routing for multi-rate multi-radio multi-channel IEEE 802.11 wireless mesh networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tehuang Liu ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei ; Wanjiun Liao

QoS routing in multi-channel wireless mesh networks (WMNs) with contention-based MAC protocols is a very challenging problem. In this paper, we propose an on-demand bandwidth-constrained routing protocol for multi-radio multi-rate multi-channel WMNs with the IEEE 802.11 DCF MAC protocol. The routing protocol is based on a distributed threshold-triggered bandwidth estimation scheme, implemented at each node for estimating the free-to-use bandwidth on each associated channel. According to the free-to-use bandwidth at each node, the call admission control, which is integrated into the routing protocol, predicts the residual bandwidth of a path with the consideration of inter-flow and intra-flow interference. To select the most efficient path among all feasible ones, we propose a routing metric which strikes a balance between the cost and the bandwidth of the path. The simulation results show that our routing protocol can successfully discover paths that meet the end-to-end bandwidth requirements of flows, protect existing flows from QoS violations, exploit the capacity gain due to multiple channels, and incurs low message overhead.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:8 ,  Issue: 1 )