By Topic

Mobile speed estimation for broadband wireless communications over Rician fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zheng, Y.R. ; Dept. of Electr. & Comput. Eng., Missouri Univ. of Sci. & Technol., Rolla, MO ; Chengshan Xiao

In this paper, a new algorithm is proposed to estimate mobile speed for broadband wireless communications, which often encounter large number of fading channel taps causing severe intersymbol interference. Different from existing algorithms, which commonly assume that the fading channel coefficients are available for the speed estimators, the proposed algorithm is based on the received signals which contain unknown transmitted data, unknown frequency selective fading channel coefficients possibly including line-of-sight (LOS) components, and random receiver noise. Theoretical analysis is first carried out from the received signals, and a practical algorithm is proposed based on the analytical results. The algorithm employs a modified normalized auto-covariance of received signal power to estimate the speed of mobiles. The algorithm works well for frequency selective Rayleigh and Rician channels. The algorithm is very resistant to noise, it provides accurate speed estimation even if the signal-to-noise ratio (SNR) is as low as 0 dB. Simulation results indicate that the new algorithm is very reliable and effective to estimate mobile speed corresponding to a maximum Doppler up to 500 Hz. The algorithm has high computational efficiency and low estimation latency, with results being available within one second after communication is established.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:8 ,  Issue: 1 )