System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Routing strategies in multihop cooperative networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gui, B. ; Cisco Syst., Inc., San Jose, CA ; Lin Dai ; Cimini, L.J.

The fading characteristics and broadcast nature of wireless channels are usually not fully considered in the design of routing protocols for wireless networks. In this paper, we combine routing and cooperative diversity, with the consideration of a realistic channel model. We focus on a multihop network with multiple relays at each hop, and three routing strategies are designed to achieve the full diversity gain provided by cooperation among the relays. In particular, an optimal routing strategy is proposed to minimize the end-to-end outage, which requires the channel information of all the links and serves as a performance bound. An ad-hoc routing strategy is then proposed based on a hop-by-hop relay selection, which can be easily implemented in a distributed way. As expected, ad-hoc routing performs worse than optimal routing, especially with a large number of hops. To achieve a good complexity-performance tradeoff, an N-hop routing strategy is further proposed, where a joint optimization is performed every N hops. Simulation results are provided which verify the outage analyses of the proposed routing strategies.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:8 ,  Issue: 2 )