Cart (Loading....) | Create Account
Close category search window
 

Adaptive transmission policy design for delay-sensitive and bursty packet traffic over wireless fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Harsini, J.S. ; Center of Excellence on Appl. Electromagn. Syst., Univ. of Tehran, Tehran ; Lahouti, F.

In this paper, we consider the problem of transmission of a delay-sensitive and bursty traffic source over a time-varying Nakagami-m fading channel in a cross-layer optimization framework. Aiming at minimizing the packet delay due to queuing at the data link layer, we present power and rate adaptation policies for coded M-QAM modulation schemes, which guarantee a prescribed channel packet error rate constraint. This is also equivalent to minimizing the system packet loss rate. The proposed adaptation policies are derived both for block and correlated channel fading scenarios. To enable the transmission policy design, we use a statistical model to characterize the packet delay derived from a known result of large deviations theory. Considering the error resolution capability of the automatic repeat request protocol, we then provide the appropriate analytical tools to incorporate the effect of packet retransmission in the proposed optimization framework for transmission policy design. The results show that the proposed adaptation policies compared to others adaptive solutions, significantly improve the delay and throughput performance for delay-sensitive bursty traffic over time-varying fading channels.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:8 ,  Issue: 2 )

Date of Publication:

Feb. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.