By Topic

Sparse Signal Representation for Complex-Valued Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Samadi, S. ; Shiraz Univ., Shiraz ; Cetin, M. ; Masnadi-Shirazi, M.A.

We propose a sparse signal representation-based method for complex-valued imaging. Many coherent imaging systems such as synthetic aperture radar (SAR) have an inherent random phase, complex-valued nature. On the other hand sparse signal representation, which has mostly been exploited in real-valued problems, has many capabilities such as superresolution and feature enhancement for various reconstruction and recognition tasks. For complex-valued problems, the key challenge is how to choose the dictionary and the representation scheme for effective sparse representation. We propose a mathematical framework and an associated optimization algorithm for a sparse signal representation-based imaging method that can deal with these issues. Simulation results show that this method offers improved results compared to existing powerful imaging techniques.

Published in:

Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, 2009. DSP/SPE 2009. IEEE 13th

Date of Conference:

4-7 Jan. 2009