By Topic

Inexpensive, universal serial bus-powered and fully portable lab-on-a-chip-based capillary electrophoresis instrument

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
G. V. Kaigala ; Department of Electrical and Computer Engineering, University of Alberta ; M. Behnam ; C. Bliss ; M. Khorasani
more authors

Capillary electrophoresis is a cornerstone of lab-on-a-chip (LOC) implementations for medical diagnostics. However, the infrastructure needed to operate electrophoretic LOC implementations tends to be large and expensive, hindering the development of portable or low-cost systems. A custom-designed and highly integrated microelectronic chip for high-voltage generation switching and interfacing is recently developed. Here, the authors integrate the microelectronic chip with a microfluidic chip, a solid-state laser, filter, lens and several dollars worth of electronic components to form an inexpensive and portable platform, which is the size of a mobile telephone. This compact system has such reduced power requirements that the complete platform can be operated using a universal serial bus link to a computer. It is believed that this system represents a significant advancement in practical LOC implementations for point-of-care medical diagnostics.

Published in:

IET Nanobiotechnology  (Volume:3 ,  Issue: 1 )