Cart (Loading....) | Create Account
Close category search window
 

An Integrated Switching DC–DC Converter With Dual-Mode Pulse-Train/PWM Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Feng Luo ; Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ ; Dongsheng Ma

This brief presents an integrated switching converter with a dual-mode control scheme. A pulse-train (PT) control employing a combination of four pulse control patterns is proposed to achieve optimal regulation performance under various operation scenarios. Meanwhile, a high-frequency pulsewidth modulation (PWM) control is adopted to ensure low output ripples and avoid digital limit cycling in steady state. The converter was fabricated with a 0.35- mum digital CMOS n-well process. The entire die area, including the on-chip pads and power devices, is 1.31 mm2 . Experimental results show that, in the steady state, the output voltage is well regulated at 1.5 V with plusmn12.5-mV ripples in the PWM mode. The measured maximum efficiency is 91%, and the efficiency stays above 70% within the entire 500-mW power range. In transient measurements, with a 100% load step change from 50 to 100 mA, the output voltage of the converter settles within 345 ns due to the fast response of the PT control, with a maximum voltage variation of 164 mV. The converter functions well when the input supply voltage frequently varies between 2.2 and 3.3 V, with a line regulation of 29.1 mV/V.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:56 ,  Issue: 2 )

Date of Publication:

Feb. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.