By Topic

Design and Analysis of UHF Micropower CMOS DTMOST Rectifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ying-Khai Teh ; Fac. of Eng., Multimedia Univ., Cyberjaya ; Faisal Mohd-Yasin ; Florence Choong ; Mamun Ibne Reaz
more authors

Design and analysis of ultrahigh-frequency (UHF) micropower rectifiers based on a diode-connected dynamic threshold MOSFET (DTMOST) is discussed. An analytical design model for DTMOST rectifiers is derived based on curve-fitted diode equation parameters. Several DTMOST six-stage charge-pump rectifiers were designed and fabricated using a CMOS 0.18-mum process with deep n-well isolation. Measured results verified the design model with average accuracy of 10.85% for an input power level between -4 and 0 dBm. At the same time, three other rectifiers based on various types of transistors were fabricated on the same chip. The measured results are compared with a Schottky diode solution.

Published in:

IEEE Transactions on Circuits and Systems II: Express Briefs  (Volume:56 ,  Issue: 2 )