By Topic

Linear LMS Compensation for Timing Mismatch in Time-Interleaved ADCs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
DamiÁn Marelli ; Numerical Harmonic Anal. Group, Univ. of Vienna, Vienna, Austria ; Kaushik Mahata ; Minyue Fu

The time-interleaved architecture permits the implementation of high-frequency analog-to-digital converters (ADCs) by multiplexing the output of several time-shifted low-frequency ADCs. An issue in the design of a time-interleaved ADC is the compensation of timing mismatch, which is the difference between the ideal and real sampling instants. In this paper, we propose a compensation method that, as opposite to existing approaches, does not assume that the input signal is band limited but assumes instead that it has a stationary known power spectrum. The compensation is then designed in a statistically optimal sense. This largely reduces the compensation order required to achieve a given reconstruction accuracy. Also, under the band-limited assumption, the proposed method achieves perfect reconstruction if no constraints are imposed on the order of the compensation. Simulation results show that a rough estimate of the input spectrum can be used without much performance loss, showing that an accurate knowledge of the input spectrum is not necessarily required.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:56 ,  Issue: 11 )