By Topic

Toward Practical Smile Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jacob Whitehill ; University of California, San Diego, La Jolla ; Gwen Littlewort ; Ian Fasel ; Marian Bartlett
more authors

Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects. This paper explores whether current machine learning methods can be used to develop an expression recognition system that operates reliably in more realistic conditions. We explore the necessary characteristics of the training data set, image registration, feature representation, and machine learning algorithms. A new database, GENKI, is presented which contains pictures, photographed by the subjects themselves, from thousands of different people in many different real-world imaging conditions. Results suggest that human-level expression recognition accuracy in real-life illumination conditions is achievable with machine learning technology. However, the data sets currently used in the automatic expression recognition literature to evaluate progress may be overly constrained and could potentially lead research into locally optimal algorithmic solutions.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:31 ,  Issue: 11 )