Cart (Loading....) | Create Account
Close category search window
 

Dynamic Wavelet Synopses Management over Sliding Windows in Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ken-Hao Liu ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Wei-Guang Teng ; Ming-Syan Chen

Due to the dynamic nature of data streams, a sliding window is used to generate synopses that approximate the most recent data within the retrospective horizon to answer queries or discover patterns. In this paper, we propose a dynamic scheme for wavelet synopses management in sensor networks. We define a data structure sliding dual tree, abbreviated as SDT, to generate dynamic synopses that adapts to the insertions and deletions in the most recent sliding window. By exploiting the properties of Haar wavelet transform, we develop several operations to incrementally maintain SDT over consecutive time windows in a time- and space-efficient manner. These operations directly operate on the transformed time-frequency domain without the need of storing/reconstructing the original data. As shown in our thorough analysis, our SDT-based approach greatly reduces the required resources for synopses generation and maximizes the storage utilization of wavelet synopses in terms of the window length and quality measures. We also show that the approximation error of the dynamic wavelet synopses, i.e., L2-norm error, can be incrementally updated. We also derive the bound of the overestimation of the approximation error due to the incremental thresholding scheme. Furthermore, the synopses can be used to answer various kinds of numerical queries such as point and distance queries. In addition, we show that our SDT can adapt to resource allocation to further enhance the overall storage utilization over time. As demonstrated by our experimental results, our proposed framework can outperform current techniques in both real and synthetic data.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 2 )

Date of Publication:

Feb. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.