By Topic

Enhancing Learning Objects with an Ontology-Based Memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zouaq, A. ; Univ. of Quebec at Montreal, Montreal, QC ; Nkambou, R.

The reusability in learning objects has always been a hot issue. However, we believe that current approaches to e-Learning failed to find a satisfying answer to this concern. This paper presents an approach that enables capitalization of existing learning resources by first creating "content metadatardquo through text mining and natural language processing and second by creating dynamically learning knowledge objects, i.e., active, adaptable, reusable, and independent learning objects. The proposed model also suggests integrating explicitly instructional theories in an on-the-fly composition process of learning objects. Semantic Web technologies are used to satisfy such an objective by creating an ontology-based organizational memory able to act as a knowledge base for multiple training environments.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 6 )