Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Bounded-Bypass Mutual Exclusion with Minimum Number of Registers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen, Sheng‐Hsiung ; Phys. Design Group, SpringSoft, Inc., Hsinchu, Taiwan ; Huang, T.-L.

A mutual exclusion mechanism that is both fair and space efficient can be highly valuable for shared memory systems under time and memory constraints such as embedded real-time systems. Several algorithms that utilize only one shared variable and guarantee a certain level of fairness have been proposed. However, these use hypothetical read-modify-write operations that have never been implemented in any system. This paper presents two fair algorithms that do not use such operations, each of which uses a single additional shared variable. The proposed algorithms employ commonly available operations, fetch&store and read/write, on two shared variables. The first algorithm satisfies the bounded-bypass condition. The second is an improvement on the first that satisfies the FIFO condition, which is the most stringent fairness condition. Additionally, it is shown that achieving the bounded-bypass condition using the same set of operations requires two shared variables. Both of the algorithms are thus optimal with respect to the number of shared variables.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:20 ,  Issue: 12 )