Cart (Loading....) | Create Account
Close category search window
 

Thermal-Aware Task Scheduling for 3D Multicore Processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiuyi Zhou ; Dept. of Electr. & Comput. Eng., Univ. of Pittsburgh, Pittsburgh, PA, USA ; Jun Yang ; Yi Xu ; Youtao Zhang
more authors

A rising horizon in chip fabrication is the 3D integration technology. It stacks two or more dies vertically with a dense, high-speed interface to increase the device density and reduce the delay of interconnects significantly across the dies. However, a major challenge in 3D technology is the increased power density, which gives rise to the concern of heat dissipation within the processor. High temperatures trigger voltage and frequency throttlings in hardware, which degrade the chip performance. Moreover, high temperatures impair the processor's reliability and reduce its lifetime. To alleviate this problem, we propose in this paper an OS-level scheduling algorithm that performs thermal-aware task scheduling on a 3D chip. Our algorithm leverages the inherent thermal variations within and across different tasks, and schedules them to keep the chip temperature low. We observed that vertically adjacent dies have strong thermal correlations and the scheduler should consider them jointly. Compared with other intuitive algorithms such as a Random and a Round-Robin algorithm, our proposed algorithm brings lower peak temperature and average temperature on-chip. Moreover, it can remove, on average, 46 percent of thermal emergency time and result in 5.11 percent (4.78 percent) performance improvement over the base case on thermally homogeneous (heterogeneous) floorplans.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:21 ,  Issue: 1 )

Date of Publication:

Jan. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.