By Topic

Privacy-Preserving Multiparty Collaborative Mining with Geometric Data Perturbation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Keke Chen ; Wright State University, Dayton ; Ling Liu

In multiparty collaborative data mining, participants contribute their own data sets and hope to collaboratively mine a comprehensive model based on the pooled data set. How to efficiently mine a quality model without breaching each party's privacy is the major challenge. In this paper, we propose an approach based on geometric data perturbation and data mining service-oriented framework. The key problem of applying geometric data perturbation in multiparty collaborative mining is to securely unify multiple geometric perturbations that are preferred by different parties, respectively. We have developed three protocols for perturbation unification. Our approach has three unique features compared to the existing approaches: with geometric data perturbation, these protocols can work for many existing popular data mining algorithms, while most of other approaches are only designed for a particular mining algorithm; both the two major factors: data utility and privacy guarantee are well preserved, compared to other perturbation-based approaches; and two of the three proposed protocols also have great scalability in terms of the number of participants, while many existing cryptographic approaches consider only two or a few more participants. We also study different features of the three protocols and show the advantages of different protocols in experiments.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:20 ,  Issue: 12 )