Cart (Loading....) | Create Account
Close category search window
 

On the Characterization and Optimization of On-Chip Cache Reliability against Soft Errors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shuai Wang ; Dept. of Electr. & Comput. Eng., Univ. Heights, Newark, NJ, USA ; Jie Hu ; Ziavras, S.G.

Soft errors induced by energetic particle strikes in on-chip cache memories have become an increasing challenge in designing new generation reliable microprocessors. Previous efforts have exploited information redundancy via parity/ECC codings or cacheline duplication for information integrity in on-chip cache memories. Due to various performance, area/size, and energy constraints in various target systems, many existing unoptimized protection schemes may eventually prove significantly inadequate and ineffective. In this paper, we propose a new framework for conducting comprehensive studies and characterization on the reliability behavior of cache memories, in order to provide insight into cache vulnerability to soft errors as well as design guidance to architects for highly efficient reliable on-chip cache memory design. Our work is based on the development of new lifetime models for data and tag arrays residing in both the data and instruction caches. Those models facilitate the characterization of cache vulnerability of stored items at various lifetime phases. We then exemplify this design methodology by proposing reliability schemes targeting at specific vulnerable phases. Benchmarking is carried out to showcase the effectiveness of our approach.

Published in:

Computers, IEEE Transactions on  (Volume:58 ,  Issue: 9 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.