Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A Genetic Optimization Approach for Isolating Translational Efficiency Bias

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Raiford, D.W. ; Dept. of Comput. Sci., Univ. of Montana, Missoula, MT, USA ; Krane, D.E. ; Doom, T.E. ; Raymer, M.L.

The study of codon usage bias is an important research area that contributes to our understanding of molecular evolution, phylogenetic relationships, respiratory lifestyle, and other characteristics. Translational efficiency bias is perhaps the most well-studied codon usage bias, as it is frequently utilized to predict relative protein expression levels. We present a novel approach to isolating translational efficiency bias in microbial genomes. There are several existent methods for isolating translational efficiency bias. Previous approaches are susceptible to the confounding influences of other potentially dominant biases. Additionally, existing approaches to identifying translational efficiency bias generally require both genomic sequence information and prior knowledge of a set of highly expressed genes. This novel approach provides more accurate results from sequence information alone by resisting the confounding effects of other biases. We validate this increase in accuracy in isolating translational efficiency bias on 10 microbial genomes, five of which have proven particularly difficult for existing approaches due to the presence of strong confounding biases.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 2 )