We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Experimental Study on the Role of Chromatic Dispersion in Continuous-Wave Supercontinuum Generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Abrardi, L. ; Inst. de Fis. Aplic., Consejo Super. de Investig. Cientificas, Madrid ; Martin-Lopez, S. ; Carrasco-Sanz, A. ; Rodriguez-Barrios, F.
more authors

The influence of chromatic dispersion on continuous-wave (CW)-pumped supercontinuum (SC) generation in kilometer-long standard fibers is experimentally investigated. We perform our study by means of a tunable, high-power fiber ring laser pumping a dispersion-shifted fiber in the wavelength range of small and medium anomalous dispersion. Our results show that, at low input powers, chromatic dispersion plays a dominant role on nonlinear pump spectral broadening, giving rise to a broader spectrum when pumping just above the zero-dispersion wavelength of the fiber. At higher input powers, however, the width of the generated SC spectrum is mostly due to the Raman effect, hence more independent of the value of the chromatic dispersion coefficient. We show that, in this case, the optimum pumping wavelengths for SC generation are not so close to the zero-dispersion wavelength of the fiber as in the previous case. In these conditions, as the chromatic dispersion grows, we can obtain square-shaped and high-power density spectra, which seem extremely promising for applications in optical coherence tomography.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 4 )