By Topic

An Aggregation Approach to Short-Term Traffic Flow Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Man-Chun Tan ; Dept. of Math., Jinan Univ., Guangzhou ; Wong, S.C. ; Jian-Min Xu ; Zhan-Rong Guan
more authors

In this paper, an aggregation approach is proposed for traffic flow prediction that is based on the moving average (MA), exponential smoothing (ES), autoregressive MA (ARIMA), and neural network (NN) models. The aggregation approach assembles information from relevant time series. The source time series is the traffic flow volume that is collected 24 h/day over several years. The three relevant time series are a weekly similarity time series, a daily similarity time series, and an hourly time series, which can be directly generated from the source time series. The MA, ES, and ARIMA models are selected to give predictions of the three relevant time series. The predictions that result from the different models are used as the basis of the NN in the aggregation stage. The output of the trained NN serves as the final prediction. To assess the performance of the different models, the naive, ARIMA, nonparametric regression, NN, and data aggregation (DA) models are applied to the prediction of a real vehicle traffic flow, from which data have been collected at a data-collection point that is located on National Highway 107, Guangzhou, Guangdong, China. The outcome suggests that the DA model obtains a more accurate forecast than any individual model alone. The aggregation strategy can offer substantial benefits in terms of improving operational forecasting.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:10 ,  Issue: 1 )