By Topic

A New Efficiency-Weighted Strategy for Continuous Human/Robot Cooperation in Navigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Poncela, A. ; Dept. de Tecnol. Electron., Univ. de Malaga, Malaga ; Urdiales, C. ; Perez, E.J. ; Sandoval, F.

Autonomous robots are capable of navigating on their own. Shared control approaches, however, allow humans to make some navigation decisions. This is typically executed either by overriding the human or the robot control at some specific situations. In this paper, we propose a method to allow cooperation between humans and robots at each point of any given trajectory so that both have some weight in the emergent behavior of the mobile robot. This is achieved by evaluating their efficiencies at each time instant and combining their commands into a single order. In order to achieve a seamless combination, this procedure is integrated into a bottom-up architecture via a reactive layer. We have tested the proposed method using a real robot and several volunteers, and results have been satisfactory both from a quantitative and qualitative point of view.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:39 ,  Issue: 3 )