Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Quantum Simulation Study of a New Carbon Nanotube Field-Effect Transistor With Electrically Induced Source/Drain Extension

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arefinia, Z. ; Dept. of Electr. Eng., Semnan Univ., Semnan ; Orouji, A.A.

In this paper, we present the unique features exhibited by a proposed structure of coaxially gated carbon nanotube field-effect transistor (CNTFET) with doped source and drain extensions using the self-consistent and atomistic scale simulations, within the nonequilibrium Green's function formalism. In this novel CNTFET structure, three adjacent metal cylindrical gates are used, where two side metal gates with lower workfunction than the main gate as an extension of the source/drain on either side of the main metal gate are biased, independent of the main gate, to create virtual extensions to the source and the drain and also to provide an effective electrical screen for the channel region from the drain voltage variations. We demonstrate that the proposed structure of CNTFET shows improvement in device performance focusing on leakage current, on-off current ratio, and voltage gain. In addition, the investigation of short-channel effects for the proposed structure shows improved drain-induced barrier lowering, hot-carrier effect, and subthreshold swing, all of which can affect the reliability of CMOS devices.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:9 ,  Issue: 2 )