By Topic

Characteristics and Reliability of Hafnium Oxide Dielectric Stacks With Room Temperature Grown Interfacial Anodic Oxide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chang, Chia-Hua ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei ; Hwu, Jenn-Gwo

Hafnium oxide dielectric stacks with anodic oxide interfacial layer (ANO-IL) were investigated under low-temperature consideration. A tilted-substrate sputtering technique, which provides various film thicknesses in one processing step, was proposed and useful for the characterization of charge distribution. It was found that charges existed in the HfO2/ANO-IL were smaller than that in HfO2/rapid-thermal-oxidation IL. The prepared samples exhibit good electrical characteristics, including small electrical hysteresis (< 10 mV), low leakage current, high effective dielectric breakdown field of 12.7 MV/cm, and maximum operating voltages of -2.74 V at 25degC and -2.32 V at 125degC for EOT = 2.3 nm stacks under a ten-year lifetime evaluation. The results suggest that the quality of IL in the dielectric stack is a critical reliability issue and that ANO is provided as a candidate for IL consideration of low-temperature dielectric stacks.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:9 ,  Issue: 2 )