Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Conjugate-Prior-Penalized Learning of Gaussian Mixture Models for Multifunction Myoelectric Hand Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun-Uk Chu ; Sch. of Electr. Eng. & Comput. Sci., Kyungpook Nat. Univ., Daegu ; Yun-Jung Lee

This paper presents a new learning method for Gaussian mixture models (GMMs) to improve their generalization ability. A traditional maximum a posterior (MAP) parameter estimate is used to achieve regularization based on conjugate priors. Plus, a model order selection criterion is derived from Bayesian-Laplace approaches, using the conjugate priors to measure the uncertainty of the estimated parameters. As a result, the proposed learning method avoids the possibility of convergence toward the boundary of the parameter space, and is also capable of selecting the optimal order for a GMM with more enhanced stability than conventional methods using a flat prior. When applying the proposed learning method to construct a GMM classifier for electromyogram (EMG) pattern recognition, the proposed GMM classifier achieves a high generalization ability and outperforms conventional classifiers in terms of recognition accuracy.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 3 )