By Topic

Extended Aperture 2-D Direction Finding With a Two-Parallel-Shape-Array Using Propagator Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jin He ; Dept. of Electron. Eng., Nanjing Univ. of Sci. & Technol., Nanjing ; Zhong Liu

In this letter, we propose a two-parallel-shape array geometry, consisting of sensors spaced much farther apart than a half-wavelength, to improve estimation accuracy via aperture extension for two-dimensional (2D) direction finding. First, the subarray parallel with the x-axis is employed to extract automatically paired high-variance but unambiguous y-axis direction cosines and low-variance but cyclically ambiguous x-axis direction cosines. Then, the subarray parallel with the y-axis is employed to extract automatically paired unambiguous x-axis direction cosines and cyclically ambiguous y-axis direction cosines. Finally, the high-variance unambiguous direction cosine estimates are used to resolve the low-variance cyclically ambiguous direction cosine estimates to obtain automatically paired azimuth-elevation angle estimates. The propagator method, which requires only linear operations but involves no eigen-decomposition or singular-value decomposition into signal/noise subspaces, is adapted to derive the direction cosines. Therefore, the proposed technique offers high estimation precision with low computational complexity.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:8 )