By Topic

Predictive Torque Control of Induction Machines Based on State-Space Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
HernÁn Miranda ; Dept. of Energy Technol., Aalborg Univ., Aalborg East ; Patricio Cortes ; Juan I. Yuz ; JosÉ Rodriguez

In this paper, we present a predictive control algorithm that uses a state-space model. Based on classical control theory, an exact discrete-time model of an induction machine with time-varying components is developed improving the accuracy of state prediction. A torque and stator flux magnitude control algorithm evaluates a cost function for each switching state available in a two-level inverter. The voltage vector with the lowest torque and stator flux magnitude errors is selected to be applied in the next sampling interval. A high degree of flexibility is obtained with the proposed control technique due to the online optimization algorithm, where system nonlinearities and restrictions can be included. Experimental results for a 4-kW induction machine are presented to validate the proposed state-space model and control algorithm.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:56 ,  Issue: 6 )