By Topic

Beyond Distance Measurement: Constructing Neighborhood Similarity for Video Annotation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Meng Wang ; Microsoft Res. Asia, Beijing ; Xian-Sheng Hua ; Jinhui Tang ; Richang Hong

In the past few years, video annotation has benefited a lot from the progress of machine learning techniques. Recently, graph-based semi-supervised learning has gained much attention in this domain. However, as a crucial factor of these algorithms, the estimation of pairwise similarity has not been sufficiently studied. Generally, the similarity of two samples is estimated based on the Euclidean distance between them. But we will show that the similarity between two samples is not merely related to their distance but also related to the distribution of surrounding samples and labels. It is shown that the traditional distance-based similarity measure may lead to high classification error rates even on several simple datasets. To address this issue, we propose a novel neighborhood similarity measure, which explores the local sample and label distributions. We show that the neighborhood similarity between two samples simultaneously takes into account three characteristics: 1) their distance; 2) the distribution difference of the surrounding samples; and 3) the distribution difference of surrounding labels. Extensive experiments have demonstrated the superiority of neighborhood similarity over the existing distance-based similarity.

Published in:

Multimedia, IEEE Transactions on  (Volume:11 ,  Issue: 3 )