Cart (Loading....) | Create Account
Close category search window

A New Recurrent Neural Network for Solving Convex Quadratic Programming Problems With an Application to the k -Winners-Take-All Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaolin Hu ; Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing ; Bo Zhang

In this paper, a new recurrent neural network is proposed for solving convex quadratic programming (QP) problems. Compared with existing neural networks, the proposed one features global convergence property under weak conditions, low structural complexity, and no calculation of matrix inverse. It serves as a competitive alternative in the neural network family for solving linear or quadratic programming problems. In addition, it is found that by some variable substitution, the proposed network turns out to be an existing model for solving minimax problems. In this sense, it can be also viewed as a special case of the minimax neural network. Based on this scheme, a k-winners-take-all (k-WTA) network with O(n) complexity is designed, which is characterized by simple structure, global convergence, and capability to deal with some ill cases. Numerical simulations are provided to validate the theoretical results obtained. More importantly, the network design method proposed in this paper has great potential to inspire other competitive inventions along the same line.

Published in:

Neural Networks, IEEE Transactions on  (Volume:20 ,  Issue: 4 )

Date of Publication:

April 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.