By Topic

Multiple-Metric Hybrid Routing Protocol for Heterogeneous Wireless Access Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lijuan Cao ; Dept. of Comput. Sci., Univ. of North Carolina at Charlotte, Charlotte, NC ; Sharif, K. ; Yu Wang ; Dahlberg, T.

The wireless multihop to an access point model appears to be a promising component of future network architectures, including multihop cellular networks and wireless access networks at the edges of mesh networks. Sophisticated software radios and core network protocols are being developed to support the integration of heterogeneous air interfaces within these access networks. A key challenge is managing diverse resources at access points (e.g., 3G, WiFi or WiMax) while discovering efficient multi-hop paths from a source to an access point based on selection criteria specified by various applications or necessitated by network resource constraints. We propose a new routing protocol that integrates multiple metrics to calculate path cost based on diverse selection criteria. In addition, a hybrid proactive/reactive anycast routing paradigm is applied to guide the discovery of an access point among multiple available access points. The result is an integrated, flexible protocol for route discovery and access point discovery. Simulation analysis shows that our approach outperforms single-metric routing protocols while supporting flexible service criteria, including load balancing at access points.

Published in:

Consumer Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE

Date of Conference:

10-13 Jan. 2009