By Topic

Email Shape Analysis for Spam Botnet Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sroufe, P. ; Dept. of Comput. Sci. & Eng., Univ. of North Texas, Denton, TX ; Phithakkitnukoon, S. ; Dantu, R. ; Cangussu, J.

Botnets have become the major sources of spamming, which generates massive unwanted traffic on networks. An effective detection mechanism can greatly mitigate the problem. In this paper, we present a novel botnet detection mechanism based on the email "shape" analysis that relies on neither content nor reputation analysis. Shape is our new way of characterizing an email by mimicking human visual inspection. A set of email shapes are derived and then used to generate a botnet signature. Our preliminary results show greater than 80% classification accuracy (without considering email content or reputation analysis). This work investigates the discriminatory power of email shape, for which we believe will be a significant complement to other existing techniques such as a network behavior analysis.

Published in:

Consumer Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE

Date of Conference:

10-13 Jan. 2009