By Topic

Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
X. Bai ; Guangxi University ; H. Wei

Considering the economics and securities for the operation of a power system, a semi-definite programming (SDP) model for the security-constrained unit commitment (SCUC) problem is described here, which is directly solved by the interior-point method for SDP within the polynomial times. The proposed method is promising for the SCUC problems because of its excellent convergence and the ability of handling the non-covex integer variables. No model decomposition and initial relaxation are needed when applying the SDP-based method. When the solution contains minor mismatches in the integer variables, a simple rounding strategy is used to correct the non-integer into integer efficiently. Different test cases from 6 to 118 buses over a 24 h horizon are presented. Extensive numerical simulations have shown that the proposed method is capable of obtaining the optimal UC schedules without any network and bus voltage violations, and minimising the operation cost as well.

Published in:

IET Generation, Transmission & Distribution  (Volume:3 ,  Issue: 2 )