By Topic

Adaptive image segmentation using a genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bhanu, B. ; Coll. of Eng., California Univ., Riverside, CA, USA ; Sungkee Lee ; Ming, J.

We present the first closed loop image segmentation system which incorporates a genetic algorithm to adapt the segmentation process to changes in image characteristics caused by variable environmental conditions such as time of day, time of year, clouds, etc. The segmentation problem is formulated as an optimization problem and the genetic algorithm efficiently searches the hyperspace of segmentation parameter combinations to determine the parameter set which maximizes the segmentation quality criteria. The goals of our adaptive image segmentation system are to provide continuous adaptation to normal environmental variations, to exhibit learning capabilities, and to provide robust performance when interacting with a dynamic environment. We present experimental results which demonstrate learning and the ability to adapt the segmentation performance in outdoor color imagery

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:25 ,  Issue: 12 )