By Topic

Wyner-Ziv coding based on TCQ and LDPC codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yang Yang ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX ; Cheng, S. ; Zixiang Xiong ; Wei Zhao

This paper considers trellis coded quantization (TCQ) and low-density parity-check (LDPC) codes for the quadratic Gaussian Wyner-Ziv coding problem. After TCQ of the source X, LDPC codes are used to implement Slepian-Wolf coding of the quantized source Q(X) with side information Y at the decoder. Assuming 256-state TCQ and ideal Slepian-Wolf coding in the sense of achieving the theoretical limit H(Q(X)|Y ), we experimentally show that Slepian-Wolf coded TCQ performs 0.2 dB away from the Wyner-Ziv distortion-rate function DWZ(R) at high rate. This result mirrors that of entropy-constrained TCQ in classic source coding of Gaussian sources. Furthermore, using 8,192-state TCQ and assuming ideal Slepian-Wolf coding, our simulations show that Slepian-Wolf coded TCQ performs only 0.1 dB away from DWZ(R) at high rate. These results establish the practical performance limit of Slepian-Wolf coded TCQ for quadratic Gaussian Wyner-Ziv coding. Practical designs give performance very close to the theoretical limit. For example, with 8,192-state TCQ, irregular LDPC codes for Slepian-Wolf coding and optimal non-linear estimation at the decoder, our performance gap to DWZ(R) is 0.20 dB, 0.22 dB, 0.30 dB, and 0.93 dB at 3.83 bit per sample (b/s), 1.83 b/s, 1.53 b/s, and 1.05 b/s, respectively. When 256-state 4-D trellis-coded vector quantization instead of TCQ is employed, the performance gap to DWZ(R) is 0.51 dB, 0.51 dB, 0.54 dB, and 0.80 dB at 2.04 b/s, 1.38 b/s, 1.0 b/s, and 0.5 b/s, respectively.

Published in:

Communications, IEEE Transactions on  (Volume:57 ,  Issue: 2 )