By Topic

Finite-length rate-compatible LDPC codes: a novel puncturing scheme - [transactions letters]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vellambi, B.N. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA ; Fekri, F.

In this paper, we study rate-compatible puncturing of finite-length low-density parity-check (LDPC) codes. We present a novel rate-compatible puncturing scheme that is easy to implement. Our scheme uses the idea that the degradation in performance is reduced by selecting a puncturing pattern wherein the punctured bits are far apart from each other in the Tanner graph of the code. Although the puncturing scheme presented is tailored to regular codes, it is also directly applicable to irregular parent ensembles. By simulations, the proposed rate-compatible puncturing scheme is shown to be superior to the existing puncturing methods for both regular and irregular LDPC codes over the binary erasure channel (BEC) and the additive white Gaussian noise (AWGN) channel.

Published in:

Communications, IEEE Transactions on  (Volume:57 ,  Issue: 2 )