By Topic

A board system for high-speed image analysis and neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sackinger, E. ; AT&T Bell Labs., Holmdel, NJ, USA ; Graf, H.-P.

Two ANNA neural-network chips are integrated on a 6U VME board, to serve as a high-speed platform for a wide variety of algorithms used in neural-network applications as well as in image analysis. The system can implement neural networks of variable sizes and architectures, but can also be used for filtering and feature extraction tasks that are based on convolutions. The board contains a controller implemented with field programmable gate arrays (FPGA's), memory, and bus interfaces, all designed to support the high compute power of the ANNA chips. This new system is designed for maximum speed and is roughly 10 times faster than a previous board. The system has been tested for such tasks as text location, character recognition, and noise removal as well as for emulating cellular neural networks (CNN's). A sustained speed of up to two billion connections per second (GC/s) and a recognition speed of 1000 characters per second has been measured

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 1 )