By Topic

Analog electronic cochlea design using multiplexing switched-capacitor circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jenn-Chyou Bor ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chung-Yu Wu, Ph.D.

A new design methodology is proposed to realize a real cochlea using the multiplexing switched-capacitor circuits. The proposed technique is based upon the transmission-line model proposed by Zwislocki (1950). At the cost of the increase in the number of clock phases, the decay rate in the transition region of the filter section can be increased by adding only a few components. Therefore, the components and chip area of the designed silicon cochlea can be small. An experimental chip containing four filter sections has been designed and fabricated. The measured frequency responses from the 32-section cochlea formed by cascading nine fabricated chips are consistent with both theoretical calculation results and observed behavior of a real cochlea. Moreover, the designed silicon cochlea has the dynamic range of 67 dB in each section and a low sensitivity to process variations. Thus it is suitable for VLSI implementation with the associated neural network

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 1 )