Cart (Loading....) | Create Account
Close category search window
 

Small-Signal Impedance Measurement of Power-Electronics-Based AC Power Systems Using Line-to-Line Current Injection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jing Huang ; Missouri Univ. of Sci. & Technol., Rolla, MO ; Corzine, K.A. ; Belkhayat, M.

Naval ships as well as aerospace power systems are incorporating a greater degree of power electronic switching sources and loads. Although these components provide exceptional performance, they are prone to instability due to their high efficiency and constant power characteristics that can exhibit negative impedance nature at certain frequencies. When designing these systems, integrators must consider the impedance versus frequency at an interface (which designates source and load). Stability criteria have been developed in terms of source and load impedances for both dc and ac systems, and it is often helpful to have techniques for impedance measurement. For dc systems, the measurement techniques have been well established. This paper introduces a new method of impedance measurement for three-phase ac systems. By injecting an unbalanced line-to-line current between two lines of the ac system, all impedance information in the traditional synchronous reference frame d-q model can be determined. For medium-voltage systems, the proposed technique is simpler and less costly than having an injection circuit for each phase. Since the current injection is between only two phase lines, the proposed measurement device can be used for both ac and dc interfaces. Simulation and laboratory measurements demonstrate the effectiveness of this new technique.

Published in:

Power Electronics, IEEE Transactions on  (Volume:24 ,  Issue: 2 )

Date of Publication:

Feb. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.