By Topic

New Physical Insights on Power MOSFET Switching Losses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yali Xiong ; Int. Rectifier Corp., Temecula, CA ; Shan Sun ; Hongwei Jia ; Shea, P.
more authors

Realistic estimation of power MOSFET switching losses is critical for predicting the maximum junction temperature and efficiency of power electronics circuits. The purpose of this paper is to investigate the internal physics of MOSFET switching processes using a physically based semiconductor device modeling approach, and subsequently examine the commonly used power loss calculation method in light of the new physical insights. The widely accepted output capacitance loss term is found to be redundant and erroneous based on the new modeling and measurement results. In addition, the existing method of approximating switching times with the power MOSFET gate charge parameters grossly overestimates the switching power loss. This paper recommends a new MOSFET gate charge parameter specification and an effective switching time estimation method to compensate for the power loss calculation error introduced by the two-slope voltage transition waveform of the power MOSFET.

Published in:

Power Electronics, IEEE Transactions on  (Volume:24 ,  Issue: 2 )