By Topic

Source Localisation in Wireless Sensor Networks Based on Optimised Maximum Likelihood

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rahman, M.Z. ; Sch. of Eng., Edith Cowan Univ., Joondalup, WA ; Habibi, D. ; Ahmad, I.

Maximum likelihood (ML) is a popular and effective estimator for a wide range of diverse applications and currently affords the most accurate estimation for source localisation in wireless sensor networks (WSN). ML however has two major shortcomings namely, that it is a biased estimator and is also highly sensitive to parameter perturbations. An Optimisation to ML (OML) algorithm was introduced that minimises the sum-of-squares bias and exhibits superior performance to ML in statistical estimation, particularly with finite datasets. This paper proposes a new model for acoustic source localisation in WSN, based upon the OML estimation process. In addition to the performance analysis using real world field experimental data for the tracking of moving military vehicles, simulations have been performed upon the more complex source localisation and tracking problem, to verify the potential of the new OML-based model.

Published in:

Telecommunication Networks and Applications Conference, 2008. ATNAC 2008. Australasian

Date of Conference:

7-10 Dec. 2008