By Topic

Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human–Robot Interaction Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kyoungchul Kong ; Dept. of Mech. Eng., Univ. of California, Berkeley, CA ; Joonbum Bae ; Masayoshi Tomizuka

To realize ideal force control of robots that interact with a human, a very precise actuating system with zero impedance is desired. For such applications, a rotary series elastic actuator (RSEA) has been introduced recently. This paper presents the design of RSEA and the associated control algorithms. To generate joint torque as desired, a torsional spring is installed between a motor and a human joint, and the motor is controlled to produce a proper spring deflection for torque generation. When the desired torque is zero, the motor must follow the human joint motion, which requires that the friction and the inertia of the motor be compensated. The human joint and the body part impose the load on the RSEA. They interact with uncertain environments and their physical properties vary with time. In this paper, the disturbance observer (DOB) method is applied to make the RSEA precisely generate the desired torque under such time-varying conditions. Based on the nominal model preserved by the DOB, feedback and feedforward controllers are optimally designed for the desired performance, i.e., the RSEA: (1) exhibits very low impedance and (2) generates the desired torque precisely while interacting with a human. The effectiveness of the proposed design is verified by experiments.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:14 ,  Issue: 1 )