Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A Synchronous Generator Internal Fault Model Based on the Voltage-Behind-Reactance Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vilchis-Rodriguez, D.S. ; Dept. of Electron. & Electr. Eng., Univ. of Glasgow, Glasgow, UK ; Acha, E.

An internal fault in a synchronous generator produces an effect similar to increasing the number of grouped coils in the stator winding, making it necessary to use additional time-variant inductances to represent the condition, with the ensuing increase in modeling complexity and computation time required for its solution. In this paper, a new model for the simulation of internal faults in synchronous generators is presented. The model is based on the so-called voltage-behind-reactance (VBR) representation, a contemporary reference frame, which has proved to be numerically more efficient than the classical phase-domain model used to study internal faults in synchronous generators; making it a better fit for large-scale, multimachine power systems applications, the long-term objective of this research work. An implementation for electromagnetic transients program (EMTP) type solutions is presented together with a test case where internal faults are applied, producing results that are in close agreement with results available in the open literature. Furthermore, an external perturbation is also carried out and results match exactly those produced by an equivalent VBR implementation.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:24 ,  Issue: 1 )