By Topic

Low-Cost 14-Bit Current-Steering DAC With a Randomized Thermometer-Coding Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Da-Huei Lee ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan ; Tai-Haur Kuo ; Kow-Liang Wen

A dynamic element-matching (DEM) method, i.e., randomized thermometer coding (RTC), for low-cost current-steering digital-to-analog converter (DAC) design is proposed. The proposed RTC method exhibits randomized starting-element selection, consecutive-element selection, and low-element switching activity. It can be used to significantly suppress the harmonic distortion caused by a large mismatch of small-area transistors, and, thus, very low cost DACs can be realized. With the proposed RTC, a 14-bit current-steering DAC is implemented in a 1P6M 0.18- mum 1.8-V CMOS process. The measured spurious-free dynamic range (SFDR) exceeds 80 dB. The measurement results showed that RTC improves the SFDR by more than 16 dB. The DAC has an active area of less than 0.28 mm2. The proposed DAC achieves a smaller active area than state-of-the-art 12- to 14-bit DACs.

Published in:

IEEE Transactions on Circuits and Systems II: Express Briefs  (Volume:56 ,  Issue: 2 )